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Nonlinear dynamics in periodic phase space

A. lomin, D. Gangardt, and S. Fishman
Physics Department, Technion, Haifa 32000, Israel
(Received 28 July 1997

Regular and chaotic dynamics of a system with periodic phase space perturbed by an alternating external
field is considered. It is relevant for the electronic motion in two dimensions in the presence of a uniform
magnetic field and a perpendicular alternating electric field. The phase space is divided into cells embedded in
a chaotic mesh. Bifurcations of resonances within the cells are studied. Transport takes place in the chaotic
mesh. It is analyzed in the framework of the separatrix map. Accelerator modes are found for some values of
parameters and their bifurcations are investigated. Their effects on transport in phase space are discussed.
[S1063-651X98)04004-3

PACS numbgs): 05.45:+b, 05.60+w, 05.40+]

[. INTRODUCTION ered. It is shown that this bifurcation is due to the frequency
change of the perturbation. The second point is an accelera-
The investigation of motion of lattice electrons in the tion mode, which is responsible for ballistic motion on a
presence of electric and magnetic fields represents an impogeparatrix mesh. The diffusive process inside the separatrix
tant task in the study of solids, in particular in the study oflayers is studied. The maximal length of ballistic trajectories
the Fermi surfaces Structu(‘eee, for examp|d:’1,2] and ref- Contributing to the diffusive process is evaluated as well.
erences in these bookdn some situations this many-body It is assumed in the following consideration that the alter-
problem can be reduced to a one-particle problem of motiomating electric fielcE is spatially homogeneousge., the sys-
on the Fermi surfacg2,3]. In many situations it is sufficient tem size is much smaller than the wavelengihd perpen-

to investigate this motion in the classical limit. In the presentgijcular to the direction of the magnetic fiekl. In this case
work the classicalbehavior of a model system for an elec- the motion is fully described in the Fourier space of recipro-
tron gas moving in & CO.”StaW mag.net|c field grjd perpendeal lattice vectork. The components of the mechanical mo-
lar alternating electric field is studied. It exhibits dynamical - ~

entum#k lying in the plane orthogonal tél appear to

phenomena that are of interest beyond the original syste ical pair. Th in th ¢ th icul
that motivated this strongly. These phenomena may be im2™ & canonical pair. Thus, in the case of the particular

portant for the understanding of absorption of radiation anghoice H=(0,0H) it follows thatk,=0 and the other two

transport in these systems. components are canonical conjugated variafBgs
The motion of an electron on the Fermi surface in the
presence of an alternating electric field and a constant mag- . eH, . eH, - 1.
kx——%vy, ky—ﬁ—cvx, v—%Vks. D

netic field is an example of nonlinear motion with a possible
transition to a chaotic regimgt—6]. The conditions for the
validity of classical description are assumed to hi@dl In  The corresponding effective Hamiltonian of one-particle mo-
[4] the electronic motion in a two-dimensional periodic po-tion is determined by the Fermi surface shape
tential in the presence of a perpendicular magnetic field was =¢&(ky K, ,k,) and the electric field is considered as a per-
studied. In this work it was shown that the appearance ofurbation.

chaotic motion is due to a nonlinear coupling between two The case of a simple cubitso lattice is considered.
degrees of freedom by the magnetic field. It was also showiherefore, in the tight-binding approximation the Fermi sur-
that nonlinear resonances and chaotic motion of an electroface is determined b{8]

have physical meaning for magnetotransport effect in lateral

surface superlatticels]. The nonstationary system was in- e(k)=—a— y(coka+ cok,a+cok,a), 2
vestigated where the chaotic motion resulted from a nonlin-

ear time-dependent electric fidld]. A detailed study of non- where « is the energy of lattice electrory is the overlap
linear motion taking place in periodic phase space and thintegral in tight-binding approximation, aral is the lattice
main properties of normal diffusion in the phase space due tgonstant. The magnetic field is chosen along thexis:
this periodicity have been reported[i] as well. Anomalous | j—=HZ while the electric field has the form

diffusion properties have been investigated 7i E=(0,Eosinyt,0). In this case the equations of moti¢h)

In the present work the electronic motion on the FermlCOrreS onding to thésd dispersion law(2) in the presence
surface is considered. Nonlinear resonant properties of peri: P 9 b P

odic phase space are considered for both an isolated res%f- the perturbative electric field read
nance approximation and chaotic motion inside separatrix

layers. Two types of bifurcations are studied. The first one is p=—sinq—e sirut,
a central elliptic point where the regular dynamics and bifur- )
cate confluence of elliptic and hyperbolic points are consid- g=sinp. 3
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classical resonances. In Sec. lll the separatrix map that de-
scribes the dynamics in the separatrix layer is studied. The
resulting motion is usually diffusion in phase space leading

to growth of energy that is linear in time. For specific values
of the parameters accelerator modes are found, leading to a
quadratic increase in energy. These are studied in Sec. IV.
The conclusions are summarized in Sec. V.

0 Il. BIFURCATE SHRINKING OF THE PHASE SPACE

5

The unperturbed Hamiltoniat{, describes a finite mo-
tion with a nonlinear frequency(H,) in a cell bounded by
b a separatrix, defined by the condition
cop+cogy=0. (8
The solution corresponding to unperturbed motion with the
Hamiltonian/, can be found from the equation of motion
(3) with €=0. It follows from Eq.(3) that the expression for
time reads
adq’ q dq’
e N
0 q Joyil-(Hotcoq')?
After a change of variablg’ =cogy’, we obtain
q J'l dx’
t=
FIG. 1. Separatrix mesh. x J(1=Ho—X")(1—Xx )X —(=1=Hg)][x' —(—1)]
Here p,q,t are the dimensionless generalized momentum, =F(#.k), (10
coordinate, and time, respectively, defined by relations
where
=k,a, =k,a, t—Qt,
P=ivd 475 B "\/ 2(1-coq)
eExa VRSN 24 Ho) (1 Ho— com)
v=v/Q, €e=—-, (4)
hQ
Ho
whereQ)=eH/cm* is the cyclotron frequency of an electron k=\/1— R Ho<0, (11
with effective massn* =#2/ ya2. The effective Hamiltonian
that generates the equation of moti@ is of the form andF (y,k) is the incomplete elliptic integral of the first kind

. ith-a modulusk [9]. The period iST=4F(7/2k)=4K(k
H=—(cop+cog))+ eq sinvt="Hy(p,q)+ eV(p,q,t)-(S) \;vr|1d the corL:euspo[rding fre%utlanc;/ is (249 9

One should note the fact that Eq8) are invariant with w(K) = 2_772 77 (12)
respect to the translations T 2K(k)’
p—p+2nw, g—q+2mmo (6) whereK(k) is the complete elliptic integral of the first kind.
With the usual notation sigi=sinam(F)= snt, one obtains
as well as the solution

p—p+(2n—-1)7, q—g+(2m-1)7, t——t (7) ent
) sinp=2kVk'(1+k')————, (13
for integersn andm. The latter case corresponds to the de- dn?t+k’
scription of holes. Therefore, the phase space is naturally
divided into 27X 27 cells as shown in Fig. 1. wherek’ =1—Kk? is the complementary modulus and sn,
The effects of a small perturbatioe<1) will be studied c¢n, and dn are the Jacobi elliptic functions with common
in the present work. Such a perturbation is weak enough steal period of 4(k). Note that the quantity.=Qw(k) is
that the basic cell structure of phase space is not destroyethe frequency with corresponding effective cyclotron mass
As a result of the perturbation, however, the sharp boundm* of an electron.
aries between the cells are replaced by the separatrix layer. When the external fiel&¢V is added to the Hamiltonian
In Sec. Il the effect of the perturbation on the motion deepH, in Eq. (5) there appear nonlinear resonances. For the
inside the cell is studied. This results in a bifurcation offollowing analysis, carried out in the isolated resonance ap-
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proximation [10-13, it is convenient to change to the resonance and its inner region shrink down to the central

[k, 0= w(K)t] variables. From Eq<3) and(13) one obtains  glliptic point and disappear when becames larger thes™
the equations of motion for thek(6), since the resonance conditi¢t7) is no longer satisfied. The
mechanism of disappearance of the LR represents a bifurca-
:ﬁ%:ﬁ“{ H] :_E(ﬂ> sinp sinvt tion of the connection of the LR hyperbolic and elliptic
dH, dt dH,  °-FB a7 > : points with the central elliptic point. It is the so-called
(1439  saddle-node bifurcation. Numerical experiments show that

. when v— »™ the inner region collapses, while the period of
0= w(k)+0O(e). (14D motion grows to infinity, as it is expected from the fact that

. . . ) motion on the inner separatrix containing hyperbolic points
Since in the resonant perturbation theory expansions of ord{,¢ an infinite period. Indeed, whén-0 andw(k)—1 the

Je are performed, terms of ordercan be neglected in Eq. phase (1+1)6— vt approaches zero for= »™ as well and

(14b. _ . . the period of phase oscillations goes to infinity.
To obtain an expression for the nonlinear resonances, we g, Eq. (17) we can see how the chain of elliptic and

expand sip in the Fourier series ovet. The Fourier expan-

sion of sirp is (see the Appendix hyperbolic points corresponding to the resonameeap-

proaches the origin in phase space whkre0, asv ap-
S(2m+ 1 proaches/™. For this purpose the expansionkirof the com-
w CO

sinp= >,

Mm=0 2m+1 K’
cos 5 TR

a2 7 plete elliptic integralK (k)~(m/2)[1+k?/4+---] is used
cog2m+1)4. (15 [13]. The resonance conditidi7) reads

2

k
w(o)—z

(2m+1)o(k)~(2m+1) =v. (18
Hence the equation fdt reads, from Eq(15),

If the deviation from the boundary frequencya is

> = cos{ 2m+1 T 8= (v"—»)/v™, the value ofk where the resonance condi-
_eovl—Kk D 4 tion (18) is satisfied is
k m=0 2m+1 K’
COSV( 5T ?) km=24/6. (19
X cog2m+1)6 sinut, (16)  This is the value ok where the chain of elliptic and hyper-

bolic points with winding numbers@+1 is found. Asé
whereK’'=K(k’). As it follows from Eqg.(16), the terms —0 alsok—0, thus the chain approaches the origin and the
with phase oscillations of di(2m+1)6—1t] give the condi- distance between the various points in phase space decreases

tions for the first-order resonances: as 82 This fact agrees with general theory of bifurcation of
equilibrium points[14]. From Fig. Zc) one can see the is-
2m+lw(k)=v, m=0137.... (17)  land chains of the resonances with=2 and 3.

The case/™=%=1 stands separately in the sense that con-

Since K(k)=K(0) and K(0)=/2, Eq. (12) implies . : ) i
©(K)=w(0)=1. Therefore, there exists a sequence of Spe[1ect|on occurs between the LR hyperbolic point and the cen

. : i tral elliptic point. It is shown in Fig. 3 that these points
cial (boundary frequencie§»'}=1,3,5...,3+1,... such . . . .
that(for Vi<v)L Ji 31 onl f?rst}-order ?esonances with wind- disappear when the bifurcation takes place and the LR ellip-
ing numbers -+ 1 gre)::\ter than 2+ 1 are observed. as it tic point survives. Aty=1 this point becomes the central
can be seen from Eq17). ' elliptic one withk=0. Thus the result19) is valid for v™=1

The typical resonance structure is demonstrated in Fig. 25 Well- This reflects the fact that in the absence of additional

For the central poinpb=q=0 the unperturbed Hamiltonian Symmetry(like rotation by 2r/3 in the previous cag¢he LR
takes valueH,=—2 and therefor&=0. For a given value hyperbolic point approaches the central elliptic poitite

of v the first-order resonance condition is satisfied for som@0int of the bifurcation faster than the LR elliptic one.
value ofk. The minimal possible value ofi is denoted by Equation(19) describes the bifurcate reconstruction of the

m. Therefore, the phase plane is divided into two regionsP@se space for any boundary frequenci€sand for e suf-

separated by the resonance with the smallest winding r]unﬂ_ciently small for the isolated resonance approximation to
old.

ber (2m+1) for given v [which will be called the lowest

resonanceélLR) below]. In the inner region only resonances
of higher orders exist. For example, in the vicinity of the LR
separatrix high-order resonances can take place due to the until now the dynamics in the first Brillouin zone, i.e., in

high-frequency perturbative term B{@m-+1)6+1t] in Eq.  the cell — w<p,q=<, was studied. In extended picture all
(16). The outer region comprises resonances of all ordersphase space is covered by a separatrix mesh, as shown in
starting with the first one(According to this division the Fig. 1. The phase space is symmetric under the translations
outer region includes the separating resonance as)well. () and(7) for e=0, as was mentioned above. As a result of
As the frequency approaches any of its boundary valuesthe action of the perturbatiosV, the separatrix mesh ac-
{v™} from below (*"=3 in the present cagethe lowest quires a finite width and chaotic motion takes place inside

Ill. SEPARATRIX MAP
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FIG. 2. Bifurcation of the lowest resonance for 0.5 andv<wv,;; with v¢;;=3, which is a typical case. The values of the parameters
are (a) v=2.60, (b) »=2.90, and(c) »=2.99. (d) Zoom of (a). e, denotes the central elliptic point, whik, and h; are elliptic and
hyperbolic points of the LR, respectively.

this region[6,10—12,1%. This leads to unlimited diffusion in Hence the change of energy determined by the perturbation

the extended phase space along the separatrix hég¢shn is

order to describe the motion in a stochastic layer it is conve-

nient to introduce a separatrix mé,10]. This map is usu- Ar2 Arl2 V.
AW=I Hodtzef —q dt. (21

ally written for an energy-time canonical paiwv(7), where 5
~A7209

w denotes an energy of the unperturbed system with the
Hamiltonian, and = determines a phase of the perturbative
field eV(q)siny(t+7). Therefore, to construct the map one Expression21) is a particular case of the Melnikov-Arnold
needs to calculate the energy chanje=AH,=w—w integral[10-12,153. Now the integral on trajectories close to
over a time interval between two successive passages in thibe separatrix will be approximated by its value on the sepa-
vicinity of two consequently connected hyperbolic points,ratrix where the period is infinite. The velocity taken on

for example,i andf in Fig. 1 at timesr and 7. This time  the separatrix of the unperturbed motion is obtained from Eg.

—A7/2

interval A 7= 7— 7 is equal to one-quarter of the period:  (9). In the case wheft(,=0 it reads
1 T fx dx’
= T=—= t= , (22
At 4T 2w K(k). (20 1_x'2



4058 A. IOMIN, D. GANGARDT, AND S. FISHMAN 57

FIG. 3. Same as Fig. 2 for.;;=1. The values of the param-
eters ares=0.05 and(a) v=0.70, (b) »=0.90, and(c) »=0.92.

where the limit ofx=1 must be avoided. Calculating this

therefore, the error introduced replacidg by o in the in-
tegral is exponentially small id 7.
On the separatrik— 1 andk’ —0, hence

Ar=K(K) ~Ins = In> (24)
=K(k)~In—=In—
T kW]

and the period goes to infinity. These two conditions are the
standard approximations used to describe the motion in the
small vicinity near the separatr{40-12,15.

Thus, summarizing the above formulas, one gets the sepa-
ratrix map

VV=W+ASinV7',

- 8
r=17+In—. (25
|wl

Here A = ewr/cosh@r/2). It can be generated by the Hamil-
tonian

oo

A
Hsep=Ho(W) + — cosVTnZE_w s(t—n) (26)

and dH o(w)/dw=In(8/|w]).

IV. ACCELERATION MODE

To proceed, we will consider an acceleration mode dy-
namics. First, however, it is worthwhile to describe how the
map (25) governs the particle motion inside the separatrix
chaotic mesh. The separatrix mesh determines the direction
of motion between hyperbolic points. Far<0 the direction
of the motion is counterclockwise, whereas for>0 the
motion is in the clockwise directiofsee Fig. ], as can be
seen by linearization around the hyperbolic fixed points.
Note thatw changes sign at each separatrix line. Therefore,
the trajectory either penetrates a different cell or stays in the
same cell. This is determined by the sign changevddfter
one iteration of the maf25). Thus, given an initial condition
w, at some timery it is possible to determine the position of

the trajectory atr= 7o+ T(Wp). A ballistic trajectory that
crosses the separatrix at each iteration of the (@&pand a

integral, we obtain for the time and coordinate w that changes its sign at every st@ee Figs. 1 and)4can

t=—2In[(1—cox)/(1+cox)] and cog=(1—e %)/(1+e 2).
Therefore, on the separatrix q=sinp=+1—cosp

= \/1-cogq=1/cosh. The limits of integration in Eq(21)
are moved to infinity. After substitution of the explicit ex-

pressions forv(q,t) from Eq. (5) and g, expression(21)
assumes the form

A7 sinp(t+7) * sinv(t+7)
Aw=¢ —dt=e€ T
—Ar CoOSH —» cosh

€T

sinvT. (23

av

cosh2—

In the vicinity of the separatrid 7 is large[see also E¢(24)

be found. An acceleration mode of the systé&nand(3) is,
for example, a periodic orbit of period 2 of E@5). Such an
acceleration mode appears when

T=To=%5— W:WOE:SeiTrJ/Vy A:AOEZ|WO|’
(27)

whereJ is an odd integer. The pointsvg, ) are parabolic
points[16,17. When any chaotic trajectory reaches the small
vicinity of these points it can be captured for some time by
an acceleration mode and will contribute strongly to the dif-
fusion.

To evaluate the maximal length of such a ballistic trajec-
tory, defined by Eq(27), one can consider dynamics in the
small vicinity of the point (y,wgp). As it is seen from Fig.

below|] and the integrand decays exponentially with time;5(a) an escape from the parabolic point occurs only in one
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&

FIG. 4. Ballistic trajectory in ,p) space. The coordinates of

the separatrix mesh are rotated 4 with respect to Fig. 1.

direction and one-dimensional motion in thealirection can
be considered. For definiteness the lower sign in &q)

will be taken in what follows. We turn now to estimate the
number of steps; required to escape to a distance of order
Defining a phase

1 from the parabolic point.
p=vr=¢do+A=v7y+A, where|A|<1 is a small devia-
tion from the parabolic point, we obtain from Eq&5) and
(27) thatW:WO+Aos|n(¢0+A)N_W0+A0(A2/2) and

— 8
¢=cdot A+ V|n:|~d>0+A+J7T+ vA2. (28

|w

Then it is natural to definef_>_= o+ A, wheregy= do+ Jr.

The resulting map fon is A=A+ vA2, or rewriting it for
arbitrary ste;n=0,1,2...

A1:A+VA2, A2:A1+VA12:A+2VA2, ey

Ap=A+nvA? .. .. (29
Choose now a value* =[1/vA]+1, wherg ] is the integer
part; thenA » 1 <2A<A,«. This will give an overestimate
of n, by a number of ordewA. Defining 2A=A, we can
define agaim* =[1/vA]+1 so thafA7+_;<2A<A7«. Re-
peating this procedure unt'zt\nlzl, one obtains that for
A<1,

1+1+1+
Srg

~ 2
ng=n*+n*+...=— —.
! vA vA

(30

4059

FIG. 5. Bifurcation of the acceleration mode periodic point for
J=3 and(a) 6=0.0, (b) 6=1.0x10 ¢, and(c) §=1.0x105, and
(d) 6=1.0x10 %

For negativeA this estimate fails since the terms alternate in
sign. In this case the terms of ord&? should be taken into
account.

When A=Ay(1+ ) with 0<5<1 a saddle-node bifur-

cation takes place and the parabolic point disintegrates into
two elliptic and two hyperbolic points. The process of con-
fluence of these points as—0 is shown in Figs. &)—5(d).
A mechanism of such a bifurcation can be understood from
the following analysis of determining of these four stationary
points. Iterating the separatrix map twice, one obtains from
Eq. (25

Wp4,=W,+ Asing,+ Asin +vIn———m|,
n+2 n ¢n ¢n |Wn+ASII’1¢n|

=é.+vIn . + vin . (3D
n+2= P |W,+ Asing,| (Wi o

Numerical calculations of the integrated probability distribu-
tion of the free path lengths for various values of the param-
etersvy andJ show that the maximal escape time agrees withThe conditions on the stationary points,, ,=w,=w and
the estimation ofh,; found from Eq.(30) for 0<A<0.01. ¢,.,=¢,=¢ lead to
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. v 8 v
sinl ¢+ §|nm cos(zlnm) =0,
(32)
| 0 8 +27'rl’1 33
T MwrAsing] W[ T v 33
Consequently, one obtains
VI—8 —+JTr J=2n+1 34
§n|w+Asin¢| sy Jment (34)
or
14
I 0,=nm, (35

a 2 n|w+Asin<j>| N

whereJ is the same as in Eq27), while n is an integer. We

will choose solutions that have physical meaning such tha

|w|<1, |¢— ol < po. Therefore, it follows from Eq(34)
that In(8Jw+ A sing|)= —Jn/v and from Eq(33) one obtains
that the solutions fow are

(36)

We require (as for §=0) that at the fixed pointv just
changes sign between consecutive iterations leading
|w+ Asing|=|w| and, consequently, the solution for the
phase is determined from

|w|=8eY"=|wy|.

COA p=

1+6° 37)
where A ¢p= ¢ — ¢y and ¢, is the value for6=0. One can
check by the linearization of Eq31) that these solutions
correspond to the hyperbolic points with¢~ +268. The
distance between them is of orde{2s5, which corresponds
to expressior(19) for the bifurcation analysis.

The other two points that are elliptic can be found
from EqQ. (35, which can be rewritten as &
+ vIn(8/|w+ Asing|)=0+2mn. Therefore, with the help of
Eq. (33 one obtains that|w|=8e 2(¢T™™/»  Taking
d= ot Ap=m/2+A¢p andw,= —8e ™" [see Eq(27)],
we obtain for the first elliptic point

T84l J=2m+ 1.

w;=—|w|e (38
Taking ¢=—m/2+ A ¢ andw,=+8e ™", we obtain the
second solution where/,= —w;. It follows from Eq. (33

that A ¢ satisfies

2A ¢
(1+ 8)codA¢)= cos)’(T) . (39
Numerical computations with different distributions of
initial conditions and various parametdr8, v,J} show that
both normal diffusion and acceleration take place. A typical
random walk with normal diffusion{p?+qg?)~Dt takes
place when the perturbation parameter Ay(1+ d) <Ay,

T, AND S. FISHMAN
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FIG. 6. Ballistic flights forv=1,J=1, and(a) §=10"% and(b)
=105

Numerical simulations show that f@>0 there is ballis-
tic motion for a very long time. The motion follows roughly
the one that was schematically plotted in Fig. 4. Conse-
quently trajectories in phase space are approximately straight
lines as demonstrated in Fig. 6. This results in ballistic mo-
tion whereD(t) ~t for a finite interval of time that increases
with 8, as shown in Fig. 7. Fop=10 © this interval is

<1500, as seen in Fig(&), while for 5=10° it is too long

to be observed in the simulation. The reason is that as
increases the elliptic island that is accelerated with what was
the accelerator mode fof=0 is larger and therefore the
sticking probability to it is larger. For a longer time scale
where ordinary diffusion is observeéi(t) = const{Fig. 7(a)].

This mechanism where stickiness leads to acceleration and
anomalous diffusion was discussed for other systems
[15,16,18.

V. CONCLUSIONS

In this paper the regular and chaotic dynamics of the non-
linear system with a periodic phase space has been investi-

1.5

0.5

5000

L L L L L
1000 2000 3000 4000 6000 7000

D(1)

1000

4000 5000 6000

t

0 L L
0 2000 3000 7000

FIG. 7. Diffusion coefficient vs timé. Averaging is carried out

over 300 initial conditions withp= v7 uniformly distributed in the

i.e., 6<0. The parabolic point representing the accelerationnterval[ — 7/2,7/2]. The values of the parameters are 1,J=1,

mode disappears and no elliptic islands are found.

and(a) 6=10"% and(b) 6=10"5.
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gated. This periodicity is due to the symmetry of the Fermi Imt ,

surface, which leads to the division of phase space into :

27X 2 cells separated by the separatrix mesh. The centers

of the cells are elliptic points wit{,= — 2 for the motion of

electrons and{,=2 for the motion of holes. The vertices of ;

the mesh are hyperbolic pointsee Fig. 1. Chaotic behavior 2K 2K+i2K’

and other interesting phenomena resulting from nonlinearity ; :
are induced by the external fields. The main feature of this
dynamics is that there are nonlinear resonances between in-
ternal cyclotron motion and the alternating electric field. The L
nature of these resonances is described for both motion -2K 0 2K

around of a central elliptic point and motion in the vicinity of Ret
separatrix, separating motion between clockwise and coun- FIG. 8. Contour of integration used in the Appendix.

terclockwise directions. The second important feature of this

dynamics is that the phase space is periodic in lpoindp  experimental and theoretical explorations of the organic met-

directions. The motion in the vicinity of stationary points of als focused so far on their Fermi surfaces that are quasi-two-

the mesh(elliptic and hyperbolit was considered in detail dimensional. The topologies of these surfaces are studied by

and the implications for the global dynamics were studied. & variety of strong magnetic fiel®21] as well as cyclotron
The bifurcate reconstruction of the phase space studietfsonanc¢22,24 techniques. The tight-binding mode) is

here apparently represents a particular case of reconstructisiged for these investigatiofigs]. For the organic metals the

of the phase space for systems with some symmetry witl§kin depth is larger than t_he size qf the small crystals us_ed in

respect to rotations around a central point, which is perturbefSonant microwave cavity experimei5]. These experi-

by a one-frequency perturbation. The main result is that ag'ents are not in the Azbel-Kaner regirf2,25 and a dif-

the driving frequency increases, the low-order resonances{ereént nonlinear theory of the nature of the one presented

shrink to the center of the cell and disappear. The windind'€"® is required.

— . . If the motion can be modeled in the framework of classi-
number 2n+1 for the lowest resonance is apprOX|materCal dynamics, the description by the separatrix i@ is

v=v/Q, where v is the driving frequency and) is the  qyite general. It can be used in the studies of electronic dy-
cyclotron frequency. Its effects can be studied by cyclotronamics in magnetic fields where anomalous diffusion of the
resonance experiments in two-dimensional electronic SYSjuiding center takes plad@6], anomalous diffusion in Jo-
tems in the case of microwave frequencies of Fhe_ alternatingephSon junctiong27], as well as for other intermittent cha-
field (v~1) and the magnitude of the magnetic fi¢gldfor  oic systemg28]. The crucial point for these is the escape

relaxation time. When a magnetic flux bif is large enough, (30).

guantum effects that were not considered here become im-
portant.

The motion in the chaotic mesh that connects the vertices
of the cells was studied in the framework of the separatrix A.l. would like to thank V. Valkov for helpful and stimu-
map. A specific acceleration mode was identified and its bifating discussions at the initial stage of the work. This re-
furcations, resulting from the variation of the parameterssearch was supported by the Ministry of Absorption of Is-
were studied in detail. These result in a transition betweemael, by the Minerva Center for Nonlinear Physics of
diffusion and acceleration. At the value of the parameteiComplex Systems, by the U.S.—Israel Binational Science
where the transition takes place the transport is dominated byoundation, and by the Technion V.P.R. Fund — E. and J.
a parabolic fixed point. In this case transport is dominated byishop Research Fund.
trajectories that stick for a long time to this point that is
accelerated. A change in parameters may lead to an acceler-  AppeNDIX: FOURIER COEFFICIENTS OF sin p
ated elliptic islands. Trajectories that are trapped in these
islands are accelerated. Their presence also enhances the dif-The function sip given by Eq.(13) is expanded in Fou-
fusion of trajectories that lie in the chaotic mesh, since thes&ier components of= wt for e=0. We have to calculate the
stick for a long time to the accelerated islands. These resul®@xpansion coefficients,, of
should manifest themselves in the conductivity of the rel-
evant systems, as can be verified with the help of the stan- ) - )
dard method$4,5,7. The details of these will be presented smp=n:2_m Anexp(in6). (A1)
elsewherd19].

The materials that are most relevant for experimental rey is convenient to define
alization of the cyclotron resonance effects that were studied

ACKNOWLEDGMENTS

in the present paper are the two-dimensional electron gas 0

embedded in lateral superlattices fabricated on GaAs hetero- A - cn—

structureg 20] and organic metalg21,27. Classical calcula- B,=—— = f e ndg, (A2)
tions in the chaotic regime were used to explain the micro- R T dn 2E+k,

wave photoconductivity for GaAs heterostructuf2s]. The 1)
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where R=kk’(k’+1). To evaluate the integral, we will The last integral in Eq(A5) is carried out by the residue
consider a closed path along a parallelogram in the complesethod. Zeros, of the denominator inside the contour are
t= 0/ w plane(see Fig. 8 with edges separated by the primi-
tive periods of the elliptic cosine, namely,K4k) and 0 Ty 0 Ty 0 _3_7T+ ym

. . . . 1 ’ 2 ’ 3™ ’
2K (k) +i2K'(k)=2K(k)(1+ y), with y=iK'/K. The inte- 4 2 4 2 4 2
gration along the path is the sum of the integrals along each

side of the parallelogram: 5w ym
P b=t 7 (A6)
A I MY S W R R B
= + + + =+ |+ +]. ;
c Ja 2rtyr Joym U P P P A and the residues are
(A3) T efine,,
We obtain from the periodicity of the integrand that res="2kK 0, 0,
b=6y 2k? sn— dn —
] w w
J+J =0; f+f =(1—e—'””<1+7>)f. (A4)
1 J3 2 Ja 4 Finally, we obtain for the expansion coefficietg
Hence 21+1
2wcosT7-r
. en? Ap=0, Agii=——————=. (A7)
B,= — é e~indyg. (A5) cosh 2l +1)W
1—-e inm(1+y) c q 5 K
s leading to Eq(15).
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