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Nonlinear dynamics in periodic phase space

A. Iomin, D. Gangardt, and S. Fishman
Physics Department, Technion, Haifa 32000, Israel

~Received 28 July 1997!

Regular and chaotic dynamics of a system with periodic phase space perturbed by an alternating external
field is considered. It is relevant for the electronic motion in two dimensions in the presence of a uniform
magnetic field and a perpendicular alternating electric field. The phase space is divided into cells embedded in
a chaotic mesh. Bifurcations of resonances within the cells are studied. Transport takes place in the chaotic
mesh. It is analyzed in the framework of the separatrix map. Accelerator modes are found for some values of
parameters and their bifurcations are investigated. Their effects on transport in phase space are discussed.
@S1063-651X~98!04004-5#

PACS number~s!: 05.45.1b, 05.60.1w, 05.40.1j
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I. INTRODUCTION

The investigation of motion of lattice electrons in th
presence of electric and magnetic fields represents an im
tant task in the study of solids, in particular in the study
the Fermi surfaces structure~see, for example,@1,2# and ref-
erences in these books!. In some situations this many-bod
problem can be reduced to a one-particle problem of mo
on the Fermi surface@2,3#. In many situations it is sufficien
to investigate this motion in the classical limit. In the prese
work the classicalbehavior of a model system for an ele
tron gas moving in a constant magnetic field and perpend
lar alternating electric field is studied. It exhibits dynamic
phenomena that are of interest beyond the original sys
that motivated this strongly. These phenomena may be
portant for the understanding of absorption of radiation a
transport in these systems.

The motion of an electron on the Fermi surface in t
presence of an alternating electric field and a constant m
netic field is an example of nonlinear motion with a possi
transition to a chaotic regime@4–6#. The conditions for the
validity of classical description are assumed to hold@3#. In
@4# the electronic motion in a two-dimensional periodic p
tential in the presence of a perpendicular magnetic field
studied. In this work it was shown that the appearance
chaotic motion is due to a nonlinear coupling between t
degrees of freedom by the magnetic field. It was also sho
that nonlinear resonances and chaotic motion of an elec
have physical meaning for magnetotransport effect in lat
surface superlattices@5#. The nonstationary system was in
vestigated where the chaotic motion resulted from a non
ear time-dependent electric field@6#. A detailed study of non-
linear motion taking place in periodic phase space and
main properties of normal diffusion in the phase space du
this periodicity have been reported in@6# as well. Anomalous
diffusion properties have been investigated in@7#.

In the present work the electronic motion on the Fer
surface is considered. Nonlinear resonant properties of p
odic phase space are considered for both an isolated r
nance approximation and chaotic motion inside separa
layers. Two types of bifurcations are studied. The first on
a central elliptic point where the regular dynamics and bif
cate confluence of elliptic and hyperbolic points are cons
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ered. It is shown that this bifurcation is due to the frequen
change of the perturbation. The second point is an accel
tion mode, which is responsible for ballistic motion on
separatrix mesh. The diffusive process inside the separa
layers is studied. The maximal length of ballistic trajector
contributing to the diffusive process is evaluated as well.

It is assumed in the following consideration that the alt
nating electric fieldEW is spatially homogeneous~i.e., the sys-
tem size is much smaller than the wavelength! and perpen-
dicular to the direction of the magnetic fieldHW . In this case
the motion is fully described in the Fourier space of recip
cal lattice vectorskW . The components of the mechanical m
mentum\kW lying in the plane orthogonal toHW appear to
form a canonical pair. Thus, in the case of the particu
choiceHW 5(0,0,H) it follows that k̇z50 and the other two
components are canonical conjugated variables@8#

k̇x52
eHz

\c
vy , k̇y5

eHz

\c
vx , vW 5

1

\
¹W k«. ~1!

The corresponding effective Hamiltonian of one-particle m
tion is determined by the Fermi surface sha
«5«(kx ,ky ,kz) and the electric field is considered as a p
turbation.

The case of a simple cubic~sc! lattice is considered.
Therefore, in the tight-binding approximation the Fermi su
face is determined by@8#

«~kW !52a2g~coskxa1coskya1coskza!, ~2!

wherea is the energy of lattice electron,g is the overlap
integral in tight-binding approximation, anda is the lattice
constant. The magnetic field is chosen along thez axis:
HW 5Hẑ, while the electric field has the form
EW 5(0,E0sinñt,0). In this case the equations of motion~1!
corresponding to the~sc! dispersion law~2! in the presence
of the perturbative electric field read

ṗ52sinq2e sinñt,

q̇5sinp. ~3!
4054 © 1998 The American Physical Society
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57 4055NONLINEAR DYNAMICS IN PERIODIC PHASE SPACE
Here p,q,t are the dimensionless generalized momentu
coordinate, and time, respectively, defined by relations

p5kya, q5kxa, t→Vt,

n5 ñ /V, e5
eE0a

\V
, ~4!

whereV5eH/cm* is the cyclotron frequency of an electro
with effective massm* 5\2/ga2. The effective Hamiltonian
that generates the equation of motion~3! is of the form

H52~cosp1cosq!1eq sinnt5H0~p,q!1eV~p,q,t !.
~5!

One should note the fact that Eqs.~3! are invariant with
respect to the translations

p→p12np, q→q12mp ~6!

as well as

p→p1~2n21!p, q→q1~2m21!p, t→2t ~7!

for integersn andm. The latter case corresponds to the d
scription of holes. Therefore, the phase space is natur
divided into 2p32p cells as shown in Fig. 1.

The effects of a small perturbation (e!1) will be studied
in the present work. Such a perturbation is weak enough
that the basic cell structure of phase space is not destro
As a result of the perturbation, however, the sharp bou
aries between the cells are replaced by the separatrix la
In Sec. II the effect of the perturbation on the motion de
inside the cell is studied. This results in a bifurcation

FIG. 1. Separatrix mesh.
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classical resonances. In Sec. III the separatrix map that
scribes the dynamics in the separatrix layer is studied.
resulting motion is usually diffusion in phase space lead
to growth of energy that is linear in time. For specific valu
of the parameters accelerator modes are found, leading
quadratic increase in energy. These are studied in Sec.
The conclusions are summarized in Sec. V.

II. BIFURCATE SHRINKING OF THE PHASE SPACE

The unperturbed HamiltonianH0 describes a finite mo-
tion with a nonlinear frequencyv(H0) in a cell bounded by
a separatrix, defined by the condition

cosp1cosq50. ~8!

The solution corresponding to unperturbed motion with
HamiltonianH0 can be found from the equation of motio
~3! with e50. It follows from Eq.~3! that the expression fo
time reads

t5E
0

qdq8

q̇
5E

0

q dq8

A12~H01cosq8!2
. ~9!

After a change of variablex85cosq8, we obtain

t5E
x

1 dx8

A~12H02x8!~12x8!@x82~212H0!#@x82~21!#

5F~c,k!, ~10!

where

c5arcsinA 2~12cosq!

~21H0!~12H02cosq!
,

k5A12
H0

2

4
, H0,0, ~11!

andF(c,k) is the incomplete elliptic integral of the first kin
with a modulusk @9#. The period isT54F(p/2,k)54K(k)
and the corresponding frequency is

v~k!5
2p

T
5

p

2K~k!
, ~12!

whereK(k) is the complete elliptic integral of the first kind
With the usual notation sinc5sinam(F)5 sn t, one obtains
the solution

sinp52kAk8~11k8!
cn t

dn 2t1k8
, ~13!

wherek85A12k2 is the complementary modulus and s
cn, and dn are the Jacobi elliptic functions with comm
real period of 4K(k). Note that the quantityvc5Vv(k) is
the frequency with corresponding effective cyclotron ma
m* of an electron.

When the external fieldeV is added to the Hamiltonian
H0 in Eq. ~5! there appear nonlinear resonances. For
following analysis, carried out in the isolated resonance
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4056 57A. IOMIN, D. GANGARDT, AND S. FISHMAN
proximation @10–12#, it is convenient to change to th
@k,u5v(k)t# variables. From Eqs.~3! and~13! one obtains
the equations of motion for the (k,u),

k̇5
dk

dH0

dH0

dt
5

dk

dH0
@H0 ,H#PB52eS dk

dH0
D sinp sinnt,

~14a!

u̇5v~k!1O~e!. ~14b!

Since in the resonant perturbation theory expansions of o
Ae are performed, terms of ordere can be neglected in Eq
~14b!.

To obtain an expression for the nonlinear resonances
expand sinp in the Fourier series overu. The Fourier expan-
sion of sinp is ~see the Appendix!

sinp5 (
m50

` v cosS 2m11

4
p D

coshS 2m11

2
p

K8

K D cos~2m11!u. ~15!

Hence the equation fork reads, from Eq.~15!,

k̇52
evA12k2

k (
m50

` cosS 2m11

4
p D

coshS 2m11

2
p

K8

K D
3cos~2m11!u sinnt, ~16!

where K8[K(k8). As it follows from Eq. ~16!, the terms
with phase oscillations of sin@(2m11)u2nt# give the condi-
tions for the first-order resonances:

~2m11!v~k!5n, m50,1,2, . . . . ~17!

Since K(k)>K(0) and K(0)5p/2, Eq. ~12! implies
v(k)<v(0)51. Therefore, there exists a sequence of s
cial ~boundary! frequencies$n i%51,3,5, . . . ,2i 11, . . . such
that for n i,n,n i 11 only first-order resonances with wind
ing numbers 2m11 greater than 2i 11 are observed, as i
can be seen from Eq.~17!.

The typical resonance structure is demonstrated in Fig
For the central pointp5q50 the unperturbed Hamiltonia
takes valueH0522 and thereforek50. For a given value
of n the first-order resonance condition is satisfied for so
value of k. The minimal possible value ofm is denoted by
m̄. Therefore, the phase plane is divided into two regio
separated by the resonance with the smallest winding n
ber (2m̄11) for given n @which will be called the lowest
resonance~LR! below#. In the inner region only resonance
of higher orders exist. For example, in the vicinity of the L
separatrix high-order resonances can take place due to
high-frequency perturbative term sin@(2m11)u1nt# in Eq.
~16!. The outer region comprises resonances of all ord
starting with the first one.~According to this division the
outer region includes the separating resonance as well.!

As the frequencyn approaches any of its boundary valu

$nm̄% from below (nm̄53 in the present case!, the lowest
er

e

-

2.

e

,
-

the

s,

resonance and its inner region shrink down to the cen
elliptic point and disappear whenn becames larger thennm̄

since the resonance condition~17! is no longer satisfied. The
mechanism of disappearance of the LR represents a bifu
tion of the connection of the LR hyperbolic and ellipt
points with the central elliptic point. It is the so-calle
saddle-node bifurcation. Numerical experiments show t
whenn→nm̄ the inner region collapses, while the period
motion grows to infinity, as it is expected from the fact th
motion on the inner separatrix containing hyperbolic poi
has an infinite period. Indeed, whenk→0 andv(k)→1 the
phase (2m11)u2nt approaches zero forn5nm as well and
the period of phase oscillations goes to infinity.

For Eq. ~17! we can see how the chain of elliptic an
hyperbolic points corresponding to the resonancem̄ ap-
proaches the origin in phase space wherek50, as n ap-
proachesnm̄. For this purpose the expansion ink of the com-
plete elliptic integralK(k)'(p/2)@11k2/41•••# is used
@13#. The resonance condition~17! reads

~2m11!v~k!'~2m11!Fv~0!2
k2

4 G5n. ~18!

If the deviation from the boundary frequencynm̄ is
d5(nm̄2n)/nm̄, the value ofk where the resonance cond
tion ~18! is satisfied is

km̄52Ad. ~19!

This is the value ofk where the chain of elliptic and hyper
bolic points with winding numbers 2m̄11 is found. Asd
→0 alsok→0, thus the chain approaches the origin and
distance between the various points in phase space decr
asd1/2. This fact agrees with general theory of bifurcation
equilibrium points@14#. From Fig. 2~c! one can see the is
land chains of the resonances withm52 and 3.

The casenm̄5051 stands separately in the sense that c
nection occurs between the LR hyperbolic point and the c
tral elliptic point. It is shown in Fig. 3 that these poin
disappear when the bifurcation takes place and the LR e
tic point survives. Atn>1 this point becomes the centra
elliptic one withk50. Thus the result~19! is valid fornm̄51
as well. This reflects the fact that in the absence of additio
symmetry~like rotation by 2p/3 in the previous case! the LR
hyperbolic point approaches the central elliptic point~the
point of the bifurcation! faster than the LR elliptic one
Equation~19! describes the bifurcate reconstruction of t
phase space for any boundary frequenciesnm̄ and fore suf-
ficiently small for the isolated resonance approximation
hold.

III. SEPARATRIX MAP

Until now the dynamics in the first Brillouin zone, i.e., i
the cell 2p<p,q<p, was studied. In extended picture a
phase space is covered by a separatrix mesh, as show
Fig. 1. The phase space is symmetric under the translat
~6! and~7! for e50, as was mentioned above. As a result
the action of the perturbationeV, the separatrix mesh ac
quires a finite width and chaotic motion takes place ins
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FIG. 2. Bifurcation of the lowest resonance fore50.5 andn,ncrit with ncrit53, which is a typical case. The values of the paramet
are ~a! n52.60, ~b! n52.90, and~c! n52.99. ~d! Zoom of ~a!. e0 denotes the central elliptic point, whilee1 and h1 are elliptic and
hyperbolic points of the LR, respectively.
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this region@6,10–12,15#. This leads to unlimited diffusion in
the extended phase space along the separatrix mesh@6#. In
order to describe the motion in a stochastic layer it is con
nient to introduce a separatrix map@4,10#. This map is usu-
ally written for an energy-time canonical pair (w,t), where
w denotes an energy of the unperturbed system with
HamiltonianH0 andt determines a phase of the perturbati
field eV(q)sinn(t1t). Therefore, to construct the map on
needs to calculate the energy changeDw[DH05w̄2w
over a time interval between two successive passages in
vicinity of two consequently connected hyperbolic poin
for example,i and f in Fig. 1 at timest̄ and t. This time
interval Dt5 t̄2t is equal to one-quarter of the period:

Dt5
1

4
T5

p

2v
5K~k!. ~20!
-

e

he
,

Hence the change of energy determined by the perturba
is

Dw5E
2Dt/2

Dt/2

Ḣ0dt5eE
2Dt/2

Dt/2 ]V

]q
q̇ dt. ~21!

Expression~21! is a particular case of the Melnikov-Arnol
integral@10–12,15#. Now the integral on trajectories close t
the separatrix will be approximated by its value on the se
ratrix where the period is infinite. The velocityq̇ taken on
the separatrix of the unperturbed motion is obtained from
~9!. In the case whenH050 it reads

t5Ex dx8

12x82
, ~22!
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4058 57A. IOMIN, D. GANGARDT, AND S. FISHMAN
where the limit ofx51 must be avoided. Calculating th
integral, we obtain for the time and coordina

t52 1
2 ln@(12cosq)/(11cosq)# and cosq5(12e22t)/(11e22t).

Therefore, on the separatrix q̇5sinp5A12cos2p
5A12cos2q51/cosht. The limits of integration in Eq.~21!
are moved to infinity. After substitution of the explicit ex
pressions forV(q,t) from Eq. ~5! and q̇, expression~21!
assumes the form

Dw5eE
2Dt

Dt sinn~ t1t!

cosht
dt5eE

2`

` sinn~ t1t!

cosht
dt

5
ep

cosh
pn

2

sinnt. ~23!

In the vicinity of the separatrixDt is large@see also Eq.~24!
below# and the integrand decays exponentially with tim

FIG. 3. Same as Fig. 2 forncrit51. The values of the param
eters aree50.05 and~a! n50.70, ~b! n50.90, and~c! n50.92.
;

therefore, the error introduced replacingDt by ` in the in-
tegral is exponentially small inDt.

On the separatrixk→1 andk8→0, hence

Dt5K~k!' ln
4

k8
5 ln

8

uwu
~24!

and the period goes to infinity. These two conditions are
standard approximations used to describe the motion in
small vicinity near the separatrix@10–12,15#.

Thus, summarizing the above formulas, one gets the s
ratrix map

w̄5w1Lsinnt,

t̄5t1 ln
8

uw̄u
. ~25!

HereL5ep/cosh(pn/2). It can be generated by the Hami
tonian

Hsep5H0~w!1
L

n
cosnt (

n52`

`

d~ t2n! ~26!

and]H0(w)/]w5 ln(8/uwu).

IV. ACCELERATION MODE

To proceed, we will consider an acceleration mode d
namics. First, however, it is worthwhile to describe how t
map ~25! governs the particle motion inside the separat
chaotic mesh. The separatrix mesh determines the direc
of motion between hyperbolic points. Forw,0 the direction
of the motion is counterclockwise, whereas forw.0 the
motion is in the clockwise direction~see Fig. 1!, as can be
seen by linearization around the hyperbolic fixed poin
Note thatw changes sign at each separatrix line. Therefo
the trajectory either penetrates a different cell or stays in
same cell. This is determined by the sign change ofw after
one iteration of the map~25!. Thus, given an initial condition
w0 at some timet0 it is possible to determine the position o
the trajectory att̄5t01T(w0). A ballistic trajectory that
crosses the separatrix at each iteration of the map~25! and a
w that changes its sign at every step~see Figs. 1 and 4! can
be found. An acceleration mode of the system~5! and~3! is,
for example, a periodic orbit of period 2 of Eq.~25!. Such an
acceleration mode appears when

t5t0[6
p

2n
, w5w0[78e2pJ/n, L5L0[2uw0u,

~27!

whereJ is an odd integer. The points (w0 ,t0) are parabolic
points@16,17#. When any chaotic trajectory reaches the sm
vicinity of these points it can be captured for some time
an acceleration mode and will contribute strongly to the d
fusion.

To evaluate the maximal length of such a ballistic traje
tory, defined by Eq.~27!, one can consider dynamics in th
small vicinity of the point (t0 ,w0). As it is seen from Fig.
5~a! an escape from the parabolic point occurs only in o
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57 4059NONLINEAR DYNAMICS IN PERIODIC PHASE SPACE
direction and one-dimensional motion in thet direction can
be considered. For definiteness the lower sign in Eq.~27!
will be taken in what follows. We turn now to estimate th
number of stepsn1 required to escape to a distance of ord
1 from the parabolic point. Defining a phas
f5nt5f01D5nt01D, where uDu!1 is a small devia-
tion from the parabolic point, we obtain from Eqs.~25! and
~27! that w̄5w01L0sin(f01D)'2w01L0(D

2/2) and

f̄5f01D1n ln
8

uw̄u
'f01D1Jp1nD2. ~28!

Then it is natural to definef̄5f̄01D̄, wheref̄05f01Jp.
The resulting map forD is D̄5D1nD2, or rewriting it for
arbitrary stepn50,1,2, . . .

D15D1nD2, D25D11nD1
25D12nD2, . . . ,

Dn5D1nnD2, . . . . ~29!

Choose now a valuen* 5@1/nD#11, where@ # is the integer
part; thenDn* 21,2D,Dn* . This will give an overestimate
of n1 by a number of ordernD. Defining 2D5D̃, we can
define againñ* 5@1/nD̃#11 so thatD̃ ñ* 21,2D̃,D̃ ñ* . Re-
peating this procedure untilDn1

51, one obtains that for

D!1,

n15n* 1 ñ* 1•••5
1

nDS 11
1

2
1

1

4
1••• D'

2

nD
.

~30!

Numerical calculations of the integrated probability distrib
tion of the free path lengths for various values of the para
etersn andJ show that the maximal escape time agrees w
the estimation ofn1 found from Eq.~30! for 0,D<0.01.

FIG. 4. Ballistic trajectory in (q,p) space. The coordinates o
the separatrix mesh are rotated byp/4 with respect to Fig. 1.
r

-
-

h

For negativeD this estimate fails since the terms alternate
sign. In this case the terms of orderD3 should be taken into
account.

When L5L0(11d) with 0,d!1 a saddle-node bifur-
cation takes place and the parabolic point disintegrates
two elliptic and two hyperbolic points. The process of co
fluence of these points asd→0 is shown in Figs. 5~a!–5~d!.
A mechanism of such a bifurcation can be understood fr
the following analysis of determining of these four stationa
points. Iterating the separatrix map twice, one obtains fr
Eq. ~25!

wn125wn1Lsinfn1LsinS fn1n ln
8

uwn1Lsinfnu D ,

fn125fn1n ln
8

uwn1Lsinfnu
1n ln

8

uwn12u
. ~31!

The conditions on the stationary pointswn125wn[w and
fn125fn[f lead to

FIG. 5. Bifurcation of the acceleration mode periodic point f
J53 and~a! d50.0, ~b! d51.031026, and~c! d51.031025, and
~d! d51.031024.
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sinS f1
n

2
ln

8

uw1Lsinfu D cosS n

2
ln

8

uw1Lsinfu D50,

~32!

2 ln
8

uw1Lsinfu
5 ln

8

uwu
6

2pn

n
. ~33!

Consequently, one obtains

n

2
ln

8

uw1Lsinfu
56J

p

2
, J52n11 ~34!

or

f1
n

2
ln

8

uw1Lsinfu
50,6np, ~35!

whereJ is the same as in Eq.~27!, while n is an integer. We
will choose solutions that have physical meaning such
uwu,1, uf2f0u!f0. Therefore, it follows from Eq.~34!
that ln(8/uw1Lsinfu)52Jp/n and from Eq.~33! one obtains
that the solutions forw are

uwu58e2Jp/n5uw0u. ~36!

We require ~as for d50) that at the fixed pointw just
changes sign between consecutive iterations leading
uw1Lsinfu5uwu and, consequently, the solution for th
phase is determined from

cosDf5
1

11d
, ~37!

whereDf5f2f0 and f0 is the value ford50. One can
check by the linearization of Eq.~31! that these solutions
correspond to the hyperbolic points withDf'6A2d. The
distance between them is of order 2A2d, which corresponds
to expression~19! for the bifurcation analysis.

The other two points that are elliptic can be fou
from Eq. ~35!, which can be rewritten as 2f
1n ln(8/uw1Lsinfu)5062pn. Therefore, with the help o
Eq. ~33! one obtains thatuwu58e22(f1mp)/n. Taking
f5f01Df5p/21Df andw0528e2Jp/n @see Eq.~27!#,
we obtain for the first elliptic point

w152uw0ue22Df/n, J52m11. ~38!

Taking f52p/21Df and w0518e2Jp/n, we obtain the
second solution wherew252w1. It follows from Eq. ~33!
that Df satisfies

~11d!cos~Df!5coshS 2Df

n D . ~39!

Numerical computations with different distributions
initial conditions and various parameters$d,n,J% show that
both normal diffusion and acceleration take place. A typi
random walk with normal diffusion̂ p21q2&;Dt takes
place when the perturbation parameterL5L0(11d),L0,
i.e., d,0. The parabolic point representing the accelerat
mode disappears and no elliptic islands are found.
at

to

l

n

Numerical simulations show that ford.0 there is ballis-
tic motion for a very long time. The motion follows roughl
the one that was schematically plotted in Fig. 4. Con
quently trajectories in phase space are approximately stra
lines as demonstrated in Fig. 6. This results in ballistic m
tion whereD(t);t for a finite interval of time that increase
with d, as shown in Fig. 7. Ford51026 this interval is
t<1500, as seen in Fig. 7~a!, while for d51025 it is too long
to be observed in the simulation. The reason is that ad
increases the elliptic island that is accelerated with what w
the accelerator mode ford50 is larger and therefore th
sticking probability to it is larger. For a longer time sca
where ordinary diffusion is observedD(t)5const@Fig. 7~a!#.
This mechanism where stickiness leads to acceleration
anomalous diffusion was discussed for other syste
@15,16,18#.

V. CONCLUSIONS

In this paper the regular and chaotic dynamics of the n
linear system with a periodic phase space has been inv

FIG. 6. Ballistic flights forn51, J51, and~a! d51026 and~b!
d51025.

FIG. 7. Diffusion coefficient vs timet. Averaging is carried out
over 300 initial conditions withf5nt uniformly distributed in the
interval @2p/2,p/2#. The values of the parameters aren51, J51,
and ~a! d51026 and ~b! d51025.
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gated. This periodicity is due to the symmetry of the Fer
surface, which leads to the division of phase space
2p32p cells separated by the separatrix mesh. The cen
of the cells are elliptic points withH0522 for the motion of
electrons andH052 for the motion of holes. The vertices o
the mesh are hyperbolic points~see Fig. 1!. Chaotic behavior
and other interesting phenomena resulting from nonlinea
are induced by the external fields. The main feature of
dynamics is that there are nonlinear resonances betwee
ternal cyclotron motion and the alternating electric field. T
nature of these resonances is described for both mo
around of a central elliptic point and motion in the vicinity
separatrix, separating motion between clockwise and co
terclockwise directions. The second important feature of
dynamics is that the phase space is periodic in bothq andp
directions. The motion in the vicinity of stationary points
the mesh~elliptic and hyperbolic! was considered in deta
and the implications for the global dynamics were studie

The bifurcate reconstruction of the phase space stu
here apparently represents a particular case of reconstru
of the phase space for systems with some symmetry w
respect to rotations around a central point, which is pertur
by a one-frequency perturbation. The main result is tha
the driving frequencyn increases, the low-order resonanc
shrink to the center of the cell and disappear. The wind
number 2m̄11 for the lowest resonance is approximate
n5 ñ /V, where ñ is the driving frequency andV is the
cyclotron frequency. Its effects can be studied by cyclot
resonance experiments in two-dimensional electronic s
tems in the case of microwave frequencies of the alterna
field (n'1) and the magnitude of the magnetic fieldH for
which the conditionvct r.1 is satisfied, wheret r is the
relaxation time. When a magnetic flux ofH is large enough,
quantum effects that were not considered here become
portant.

The motion in the chaotic mesh that connects the vert
of the cells was studied in the framework of the separa
map. A specific acceleration mode was identified and its
furcations, resulting from the variation of the paramete
were studied in detail. These result in a transition betw
diffusion and acceleration. At the value of the parame
where the transition takes place the transport is dominate
a parabolic fixed point. In this case transport is dominated
trajectories that stick for a long time to this point that
accelerated. A change in parameters may lead to an acc
ated elliptic islands. Trajectories that are trapped in th
islands are accelerated. Their presence also enhances th
fusion of trajectories that lie in the chaotic mesh, since th
stick for a long time to the accelerated islands. These res
should manifest themselves in the conductivity of the r
evant systems, as can be verified with the help of the s
dard methods@4,5,7#. The details of these will be presente
elsewhere@19#.

The materials that are most relevant for experimental
alization of the cyclotron resonance effects that were stud
in the present paper are the two-dimensional electron
embedded in lateral superlattices fabricated on GaAs het
structures@20# and organic metals@21,22#. Classical calcula-
tions in the chaotic regime were used to explain the mic
wave photoconductivity for GaAs heterostructures@23#. The
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experimental and theoretical explorations of the organic m
als focused so far on their Fermi surfaces that are quasi-t
dimensional. The topologies of these surfaces are studie
a variety of strong magnetic field@21# as well as cyclotron
resonance@22,24# techniques. The tight-binding model~2! is
used for these investigations@25#. For the organic metals the
skin depth is larger than the size of the small crystals use
resonant microwave cavity experiments@25#. These experi-
ments are not in the Azbel’-Kaner regime@22,25# and a dif-
ferent nonlinear theory of the nature of the one presen
here is required.

If the motion can be modeled in the framework of clas
cal dynamics, the description by the separatrix map~25! is
quite general. It can be used in the studies of electronic
namics in magnetic fields where anomalous diffusion of
guiding center takes place@26#, anomalous diffusion in Jo-
sephson junctions@27#, as well as for other intermittent cha
otic systems@28#. The crucial point for these is the escap
from the acceleration mode that is modeled by Eqs.~28!–
~30!.
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APPENDIX: FOURIER COEFFICIENTS OF sin p

The function sinp given by Eq.~13! is expanded in Fou-
rier components ofu5vt for e50. We have to calculate the
expansion coefficientsAn of

sinp5 (
n52`

`

Anexp~ inu!. ~A1!

It is convenient to define

Bn5
pAn

R
5E

2p

p
cn

u

v

dn 2
u

v
1k8

e2 inudu, ~A2!

FIG. 8. Contour of integration used in the Appendix.
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where R5kAk8(k811). To evaluate the integral, we wi
consider a closed path along a parallelogram in the com
t5u/v plane~see Fig. 8!, with edges separated by the prim
tive periods of the elliptic cosine, namely, 4K(k) and
2K(k)1 i2K8(k)52K(k)(11g), with g5 iK 8/K. The inte-
gration along the path is the sum of the integrals along e
side of the parallelogram:

R
C

5E
p

2p1gp

1E
2p1gp

gp

1E
gp

2p

1E
2p

p

[E
1
1E

2
1E

3
1E

4
.

~A3!

We obtain from the periodicity of the integrand that

E
1
1E

3
50; E

2
1E

4
5~12e2 inp~11g!!E

4
. ~A4!

Hence

Bn5
1

12e2 inp~11g! RC

cn
u

v

dn 2
u

v
1k8

e2 inudu. ~A5!
hy
-

e

ev

A.

-

x

ch

The last integral in Eq.~A5! is carried out by the residue
method. Zerosun of the denominator inside the contour a

u15
2p

4
1

gp

2
, u25

p

4
1

gp

2
, u35

3p

4
1

gp

2
,

u45
5p

4
1

gp

2
~A6!

and the residues are

res
u5un

52
p

2K~k!

e2 inun

2k2 sn
un

v
dn

un

v

.

Finally, we obtain for the expansion coefficientsAn

A2l50, A2l 115

2vcos
2l 11

4
p

cosh~2l 11!
pK8

2K

, ~A7!

leading to Eq.~15!.
, in
s

ic

.

@1# A. P. Gracknell and K. C. Wong,The Fermi Surface~Claren-
don, Oxford, 1973!.

@2# I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov,Electron
Theory of Metals~Consultants Bureau, New York, 1973!.

@3# J. M. Luttinger, Phys. Rev.84, 814 ~1951!.
@4# T. Geisel, J. Wagnehuber, P. Niebauer, and G. Obermair, P

Rev. Lett.64, 1581~1990!; J. Wagenhuber, T. Geisel, P. Nie
bauer, and G. Obermair, Phys. Rev. B45, 4372 ~1992!; R.
Fleischmann, T. Geisel, R. Ketzmerick, and G. Petsch
Physica D86, 171 ~1995!, and references therein.

@5# R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. R
Lett. 68, 1367~1992!.

@6# G. M. Zaslavsky, M. Yu. Zakharov, R. Z. Sagdeev, D.
Usikov, and A. A. Chernikov, Zh. E´ ksp. Teor. Fiz.91, 500
~1986! @Sov. Phys. JETP64, 294 ~1986!#.

@7# T. Geisel, A. Zacherl, and G. Radons, Phys. Rev. Lett.59,
2503 ~1987!; Z. Phys. B71, 117 ~1988!.

@8# C. Kittel, Introduction to Solid State Physics~Wiley, New
York, 1971!.

@9# A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichiv,Inte-
grals and Series~Gordon and Breach, New York, 1986!.

@10# B. V. Chirikov, Phys. Rep.52, 265 ~1979!.
@11# A. J. Lichtenberg and M. A. Lieberman,Regular and Stochas

tic Motion ~Springer-Verlag, New York, 1983!.
@12# G. M. Zaslavsky,Chaos in Dynamic Systems~Harwood Aca-

demic, New York, 1985!.
@13# E. Janke, F. Emde, and F. Lo¨sh, Tables of Higher Functions

~Teubner Verlagsgesellschaft, Stuttgart, 1960!.
s.

l,

.

@14# V. I. Arnol’d, Catastrophe Theory~Springer, Berlin, 1986!.
@15# G. M. Zaslavsky, Chaos4, 589 ~1994!.
@16# G. M. Zaslavsky, M. Edelman, and B. Niyazov, Chaos7, 159

~1997!, and references therein.
@17# V. Melnikov, in Transport, Chaos, and Plasma Physics, edited

by S. Benkadda, F. Doveil, and Y. Elskens~World Scientific,
Singapore, 1995!, p. 142.

@18# G. M. Zaslavsky, Physica D76, 110~1994!; J. D. Meiss, Phys.
Rev. A 34, 2375 ~1986!; R. S. MacKay, Physica D7, 283
~1983!.

@19# A. Iomin and S. Fishman~unpublished!.
@20# For a review see W. Hansen, U. Merkt, and J. P. Kotthaus

Nanostructured Systems, edited by M. Reed, Semiconductor
and Semimetals Vol. 35~Academic, San Diego, 1992!, p. 279.

@21# J. Wosnitza,Fermi Surfaces of Low-Dimensional Organ
Metals and Superconductors~Springer, Berlin, 1996!.

@22# S. Hill, Phys. Rev. B55, 4931~1997!, and references therein
@23# E. Vasiliadou,et al., Phys. Rev. B52, R8658~1995!.
@24# J. Singletonet al., Phys. Rev. Lett.68, 2500~1992!; J. Single-

ton et al., Physica B184, 470 ~1993!.
@25# S. J. Blundel, A. Ardavan, and J. Singleton, Phys. Rev. B55,

R6129~1997!.
@26# G. Petschel and T. Geisel, Phys. Rev. A44, 7959~1991!.
@27# T. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. Lett.54,

616 ~1985!.
@28# T. Geisel and S. Thomae, Phys. Rev. Lett.52, 1936~1984!; I.

Procaccia and H. Schuster, Phys. Rev. A28, 1210 ~1983!; P.
Manneville, J. Phys.~Paris! 41, 1235~1980!.


